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Abstract
The system of a fractional-dimensional Bose-like oscillator of one degree of
freedom whose canonical variables satisfy the general Wigner commutation
relations is investigated. Momentum–position uncertainty relations are
obtained. For states without definite parity the well known one-dimensional
Heisenberg uncertainty principle is retained, but for odd and even states
momentum–position uncertainty inequalities depending on the dimension of
the space are obtained. The motions of both the free particle and the harmonic
oscillator in a fractional-dimensional space are studied through the probability
density function. The existence of compression (spread) of the probability
density for dimensionsD < 1 (D > 1) is shown. Fractional-dimensional Bose-
like operators are also deduced. They together with the reflection operator form
an R-deformed Heisenberg algebra with a deformation parameter depending
on the dimension of the space.

PACS numbers: 0365, 0230T, 0365C

1. Introduction

Studies on physical systems assuming continuous variation in the space dimension have been
increasing over the last few decades. Critical phenomena [1–4] and fractal structures [5,6] have
been extensively studied within the non-integer-dimensional space approaches. The possibility
that the space–time dimension is slightly different from four, has also been considered by
several authors [7–10].

Recently, a considerable amount of work has been devoted to the study of low-
dimensional systems within the framework of the fractional-dimensional space model proposed
by Stillinger [11]. By applying an approach introduced by He [12], in which the real
semiconductor heterostructure system is substituted by an effective isotropic environment
with a fractional dimension, exciton [13–15], magnetoexciton [16–18] and impurity [14, 19]
states in semiconductor nanostructures have been successfully modelled. The dimensional
parameter is then assumed as a measure of the degree of anisotropy or confinement of the real
system. Thus, given this simple value, the real system can be modelled in a simple analytical
way. However, the fractional-dimensional space is not a vector space [11], consequently,
great difficulties arise in handling the basic formalism. Moreover, the difficulties present in
both the geometrical and physical understanding of the formalism make the development of
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the fundamental properties and concepts of fractional-dimensional approaches in a systematic
way difficult, dealing with the inclusion of a lot of anzats and a priori definitions (see for
instance [13, 20, 21]).

One of the purposes of this paper is to find, in a systematic way, expressions for quantum
mechanical operators that are fundamental for the description of systems of one degree of
freedom in a fractional-dimensional space. The other one is to carry out a study of the
behaviour of two simple systems (the free particle and the harmonic oscillator) in order to
reveal the physical meaning of the dimensional parameter. This paper is organized as follows.
For completeness of arguments we recall some results of previous works [22–26] in section 2,
where an expression for the fractional-dimensional momentum operator corresponding to a
system of one degree of freedom is presented. In section 3 momentum–position uncertainty
relations in a fractional-dimensional space are obtained. The motion of a free particle in
a fractional-dimensional space is investigated in section 4. In section 5 the behaviour of a
fractional-dimensional Bose-like oscillator is carefully studied. The fractional-dimensional
Bose-like operators are investigated in section 6, and conclusions are summarized in section 7.

2. Momentum operator

In order to study a system of a single degree of freedom in a fractional-dimensional space, we
introduce a Cartesian-like pseudocoordinate ξ (−∞ < ξ < ∞). Thus the radial integration
weight (see [11]) may be written as

σ(D)rD−1 = σ(D)

2
|ξ |D−1 σ(D) = 2πD/2

�(D/2)
(1)

where �(x) is the gamma function.
In this way, the volume of the radius-R0 sphere in the fractional-dimensional space is

given by

V (R,D) =
∫ R0

0
σ(D)rD−1 dr =

∫ R0

−R0

σ(D)

2
|ξ |D−1 dξ = πD/2RD0

�(1 +D/2)
. (2)

This agrees precisely with the spherical volume element for multi-dimensional Euclidean
spaces [27] when D is a positive integer.

If we assume the system of units in such way that h̄ = 1, the one-dimensional momentum
operator is

P = 1

i

d

dξ
. (3)

Taking into account the integration weight (equation (1)), one can straightforwardly
demonstrate that the momentum operator given by equation (3) is not Hermitian for D �= 1.
Therefore we must reject equation (3) for systems of a single degree of freedom in a fractional-
dimensional space. Moreover, we have to assume more general commutation relations for the
canonical variables than the well known relation

[ξ, P ] = i (4)

since equation (4) leads, inevitably, to equation (3).
The most general wave-mechanical representation of the momentum operator [23,24] can

be found by considering the general Wigner commutation relations for the canonical variables
of a Bose-like oscillator of one degree of freedom [22]:

iP = [ξ, (P 2 + ξ 2)/2] − iξ = [P, (P 2 + ξ 2)/2]. (5)
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The relations above can be rewritten in the form [23, 24]

{P, S} = 0 {ξ, S} = 0 (6)

where S is an operator given by

S = [ξ, P ] − i. (7)

The eigenvalues ξ ′ of the coordinate operator ξ have a continuous spectrum (−∞ < ξ ′ <∞)
and the Hilbert space can be expanded in the eigenfunctions |ξ ′〉 of ξ [24].

By sandwiching theS-operator with |ξ ′〉 and |ξ ′′〉 the following expression can be obtained:

〈ξ ′|S|ξ ′′〉 = (ξ ′ − ξ ′′)〈ξ ′|P |ξ ′′〉 − iδ(ξ ′ − ξ ′′). (8)

On the other hand, from the second relation in equation (6) the following expression results:

〈ξ ′|S|ξ ′′〉 = 2iA(ξ ′)δ(ξ ′ + ξ ′′) (9)

where A(ξ ′) is in general a complex function.
The equation above together with equation (8) leads to

〈ξ ′|P |ξ ′′〉 = −iδ′(ξ ′ − ξ ′′) + i
A(ξ ′)
ξ ′ δ(ξ ′ + ξ ′′) + B(ξ ′)δ(ξ ′ − ξ ′′) (10)

with B(ξ ′) a complex function.
Introducing, for convenience, the completeness condition

∫
dξ ′|ξ ′〉〈ξ ′| = 1 in

equation (10) and writing the wavefunction for a state | · · ·〉 as �(ξ ′) = 〈ξ ′| · · ·〉, it can
be found that

P�(ξ ′) = −i
d�(ξ ′)

dξ ′ + i
A(ξ ′)
ξ ′ �(−ξ ′) + B(ξ ′)�(ξ ′). (11)

Thus the most general wave-mechanical representation of the momentum operator is then given
by

P = 1

i

d

dξ
+ i
A(ξ)

ξ
R + B(ξ) (12)

where R is the reflection operator.
In terms of R and taking into account equation (9), the S-operator may be rewritten as

S = 2iA(ξ)R. (13)

From the anti-hermiticity of S (S = − S†) and substituting equations (12) and (13) in the
first relation of equation (6), the following restrictions on the undetermined functions A(ξ)
and B(ξ) are found:

A∗(ξ) = A(−ξ) (14)

and
dA(ξ)

dξ
+ i[B(ξ) + B(−ξ)]A(ξ) = 0. (15)

With the aim to determine an expression for the fractional-dimensional momentum operator
corresponding to a system of one degree of freedom, we now require the hermiticity of P [26].
Thus bearing in mind equation (12) and the integration weight (equation (1)), it is not difficult
to find from the hermiticity of P that the function B(ξ) must be given by

B(ξ) = −i
(D − 1)

2ξ
. (16)
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Equation (16) together with equation (15) leads toA(ξ) = constant. The value of this constant
may be found if we bear in mind that P = −i∇. Thus the nabla operator can be written as

∇ = d

dξ
− A

ξ
R +

(D − 1)

2ξ
. (17)

We then require ∇u = 0 when u = constant (and u = constant if ∇u = 0 (see appendix A)),
and obtain

A = (D − 1)

2
. (18)

The fractional-dimensional momentum operator for a system of a single degree of freedom is
finally given by [26]

P = 1

i

d

dξ
+ i
(D − 1)

2ξ
R − i

(D − 1)

2ξ
. (19)

The operator above is, essentially, a particular case of the Dunkle operator [28]. However, one
should notice that, as a consequence of the inclusion of the integration weight (equation (1)), our
fractional-dimensional momentum operator is not a particular case of the momentum operator
studied in [24, 25] and the differences may be important for defining a deformed calculus.

3. The momentum–position uncertainty relation

In a one-dimensional space, the Heisenberg uncertainty principle may be written as√
〈(�ξ)2〉〈(�p)2〉 � 1/2. This inequality is a consequence of the momentum-coordinate

commutation relation (4). However, in a fractional-dimensional space equation (4) is no
longer fulfilled, therefore we have to search for a more general momentum–position uncertainty
relation.

We start with the introduction of an auxiliary positive integral depending on a real
parameter α:

I (α) = σ(D)

2
lim
γ→0

∫ ∞

−∞
e−γ ξ 2 |(α�ξ − i�p)�|2 |ξ |D−1 dξ � 0 (20)

where

�ξ = ξ − 〈ξ〉 �p = p − 〈P 〉 (21)

and 〈ξ〉, 〈P 〉 are the expectation values of the position and momentum, respectively. It is
worth remarking that in a fractional-dimensional space, the expectation value of a magnitude
represented by an operator K for a given state described by the wavefunction � is given by
(see appendix B)

〈K〉 = σ(D)

2
lim
γ→0

∫ ∞

−∞
e−γ ξ 2

�∗K�|ξ |D−1 dξ. (22)

From the expression above and making use of the hermiticity of the operators �ξ and �p,
equation (20) can be rewritten as

I (α) = σ(D)

2
lim
γ→0

∫ ∞

−∞
e−γ ξ 2

�∗(α�ξ + i�p)(α�ξ − i�p)�|ξ |D−1 dξ

= α2〈(�ξ)2〉 − iα〈[ξ, P ]〉 + 〈(�p)2〉 � 0 (23)

where we have taken account of [�ξ,�p] = [ξ, P ], a relation that can be straightforwardly
obtained from equation (21).
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With the aim of guaranteeing the validity of the inequality (equation (23)) for any value
of α we then require

〈(�ξ)2〉 〈(�p)2〉 � −〈[ξ, P ]〉2

4
. (24)

After computing the expectation value 〈[ξ, P ]〉 for even and odd states it is not difficult to
prove that

〈[ξ, P ]〉 =
{

iD for even states

i(2 −D) for odd states.
(25)

The case of states without definite parity may be studied by introducing the normalized even
�even(ξ) = √

2[�(ξ)+�(−ξ)]/2 and odd�odd(ξ) = √
2[�(ξ)−�(−ξ)]/2 functions. Thus

bearing in mind that because of the symmetry properties, the even–odd mixed terms vanish
(i.e. 〈�even|�odd〉 = 〈�odd|�even〉 = 0) and considering equation (25), the expectation value
〈[ξ, P ]〉 for the state described by the wavefunction �(ξ) = √

2[�even(ξ) + �odd(ξ)]/2 is
found to be

〈[ξ, P ]〉 = i. (26)

From equations (24)–(26), the momentum–position uncertainty relations in a fractional-
dimensional space are finally found:

√
〈(�ξ)2〉

√
〈(�p)2〉 �



D/2 for even states

(2 −D)/2 for odd states

1/2 otherwise.

(27)

One should notice that for D < 1 the lower bound of the momentum–position uncertainty
relation corresponding to an odd state is greater than that corresponding to an even state. An
opposite behaviour takes place for D > 1. Thus even and odd states have similar behaviour
only in the caseD = 1. It is also remarkable that classical bounds corresponding to even and
odd states are obtained when D → 0 and D → 2, respectively.

4. Free particle

Let us concentrate on the study of the behaviour of a free particle in a fractional-dimensional
space. Once we have determined the momentum operator (see section 2), we can write the
Hamiltonian operator as follows:

H = P 2

2
= −1

2

[
d2

dξ 2
+
(D − 1)

ξ

d

dξ
− (D − 1)(1 − R)

2ξ 2

]
(28)

where we have considered units such that h̄ = 1, m = 1. The wavefunctions that describe
the motion of a free particle can be found from the Schrödinger equation H! = E!.
The eigenfunctions of the Hamiltonian operator may be expressed in terms of the even
!even(ξ) = !(ξ) + !(−ξ) and odd !odd(ξ) = !(ξ) − !(−ξ) functions. They satisfy
the following equations:[

d2

dξ 2
+
(D − 1)

ξ

d

dξ
+ 2E

]
!even(ξ) = 0 (29)[

d2

dξ 2
+
(D − 1)

ξ

d

dξ
− (D − 1)

ξ 2
+ 2E

]
!odd(ξ) = 0 (30)

respectively.
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After solving equations (29), (30) and requiring !(ξ) = [
!even(ξ) +!odd(ξ)

] /
2, the

wavefunctions are found to be

!p(ξ) = Ap |pξ |1−D/2 [
JD/2−1(|pξ |) + i sgn(pξ)JD/2(|pξ |)

]
p =

√
2E (31)

where

Ap =
√

|p|D−1

2σ(D)
(32)

is a normalization factor (see appendix B),

sgn(x) =
{

1 if x > 0

−1 if x < 0
(33)

and Jν(x) are Bessel functions.
Bearing in mind that [29]

J1/2(x) =
√

2

πx
sin x J−1/2(x) =

√
2

πx
cos x (34)

one should note that the well known one-dimensional wavefunction !p(ξ) = 1√
2π

eipξ is
immediately recovered when the value D = 1 is taken in equation (31).

An interesting picture of the behaviour of a free particle in a fractional-dimensional space
may be now obtained by computing the position dependence of the probability density:

ρp = σ(D)

2
|ξ |D−1

∣∣!p∣∣2
(35)

for different values of the dimensional parameter. The results are displayed in figure 1. An
oscillating behaviour of the probability density for D �= 1 can be appreciated in spite of the
well known constant value of ρp for the one-dimensional case. One should note that because of
the inclusion of the integration weight (equation (1)) although |!p|2 remains finite at pξ = 0,
ρp(0)→ ∞ when D < 1. This situation leads to a very strong localization of the probability
density at the origin (see figure 1(a)). However, whenD > 1, the probability density is almost
zero in the central region, so that a spreading of ρp may be clearly seen. This interesting
behaviour reveals that the physical meaning of the dimensional parameter is strongly related
to the degree of compression or spread of the probability density function.

5. The Bose-like oscillator

For the study of a fractional-dimensional Bose-like oscillator, we substitute equation (19) in
H = (P 2 + ξ 2)/2 and obtain the corresponding expression for the Hamiltonian operator:

H = −1

2

[
d2

dξ 2
+
(D − 1)

ξ

d

dξ
− (D − 1)− (D − 1)R

2ξ 2
− ξ 2

]
. (36)

Recently, certain classes of integrable many-body systems (the so-called Calogero models)
have been analysed by applying the exchange operator formalism [30–33]. In this formalism,
the Hamiltonian of the Calogero model is expressed in terms of the Dunkle operator and
reduces, essentially, to the Hamiltonian given in (equation (36)). The similarity is remarkable
and suggests a connection between the N -body Calogero problem and the fractional-
dimensional Bose-like oscillator. Nevertheless, there is an essential physical difference. In
the first case the presence of the Dunkle operator refers to a many-body problem and is a
consequence of the interaction between the particles of the system, in the second case, however,
the Dunkle operator appears as a consequence of the nature of the space.
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Figure 1. Position dependence of the probability density ρp corresponding to a free particle of
one degree of freedom in a fractional-dimensional space for different values of the dimensional
parameter. (a) For D � 1 and (b) for D > 1.

Before discussing the eigenvalue problem of the Hamiltonian it is convenient to note that

[R,H ] = 0. (37)

The parity of a state is thus an integral of motion, so that the eigenvalue problem of the
Hamiltonian can be expressed by[

d2

dξ 2
+
(D − 1)

ξ

d

dξ
− ξ 2

]
χ even(ξ) = −2Eχ even(ξ) (38)

and [
d2

dξ 2
+
(D − 1)

ξ

d

dξ
− (D − 1)

ξ 2
− ξ 2

]
χodd(ξ) = −2Eχodd(ξ) (39)
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for even and odd states respectively.
The wavefunctions of the fractional-dimensional Bose-like oscillator of a single degree

of freedom are then given by

χn(ξ) =
√

2

σ(D)
φ
D−1

2
n (ξ) =

{
Aeven
n (D) exp[−ξ 2/2] LD/2−1

n
2

(ξ 2) for even states

Aodd
n (D) exp[−ξ 2/2] ξ LD/2n−1

2
(ξ 2) for odd states

(40)

where φ
D−1

2
n (x) are the generalized Hermite functions (for an extensive discussion of the

definition and properties of the generalized Hermite functions and their relations to the
generalized Hermite and generalized Laguerre polynomials you can see [34]), Lαk are the
generalized Laguerre polynomials, and

Aeven
n (D) = (−1)n/2

[
(n/2)!�(D/2)

πD/2�(n+D
2 )

]1/2

(41)

Aodd
n (D) = (−1)

n−1
2

[
( n−1

2 )!�(D/2)

πD/2�(n+D+1
2 )

]1/2

. (42)

The wavefunctions satisfy the normalization condition

σ(D)

2

∫ ∞

−∞
|χ(ξ)|2|ξ |D−1 dξ = 1. (43)

The corresponding eigenenergies are given by

En = n +D/2 (n = 0, 1, 2, 3, . . .) (44)

an expression that is in agreement with a previous work of Stillinger [11].
Bearing in mind that the generalized Hermite functions φ0

n(x) reduce to Hermite
functions [34], we must note that equation (40) recovers the well known one-dimensional
case when D = 1.

The probability of finding the value of the pseudocoordinate of a particle (in the nth state)
within the interval (ξ, ξ + dξ ) is proportional to the probability density

ρn(ξ) = σ(D)

2
|ξ |D−1|χn(ξ)|2 (n = 0, 1, 2, 3, . . .). (45)

In figure 2 we present the probability density ρ0, corresponding to the ground state of a
fractional-dimensional Bose-like oscillator as a function of the pseudocoordinate ξ for different
values of the dimensionality. WhenD < 1 (cf figure 2(a)), one may notice that the compression
of the probability density ρ0 around the origin of pseudocoordinates increases as the dimension
decreases. Moreover, whenD > 1 (cf figure 2(b)), ρ0 becomes vanishingly small in the central
region, so that a spreading of the probability density is quite apparent (especially when the
dimensionality increases). This trend—similar to that of the free particle (see the section
above)—suggests that an one-dimensional harmonic oscillator in presence of a confining
(spreading) potential could be treated as a fractional-dimensional Bose-like oscillator of one
degree of freedom with dimension D < 1 (D > 1) essentially related to the degree of
compression (spread) of the probability density. The above statements are in agreement with
the approach introduced by He [12] and extensively used in low-dimensional condensed matter
physics [12–21].

The strong localization of the particle around ξ = 0 is notable when D < 1 (see
figure 2(a)). In fact, the probability density ρ0 becomes infinite at ξ = 0 when D < 1. This
is because the integration weight (equation (1)) diverges at the origin of pseudocoordinates
when D < 1 whereas the wavefunction remains finite.
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Figure 2. The probability density ρ0 corresponding to the ground state of a fractional-dimensional
Bose-like oscillator as a function of the pseudocoordinate and for different values of the dimensional
parameter. (a) For D � 1 and (b) for D > 1.

The pseudocoordinate dependence of the probability density ρ1 corresponding to the
first excited state is displayed in figure 3 for different values of the dimensional parameter.
Because of the odd parity of the state the probability density becomes zero at the origin of
pseudocoordinate and there is no longer localization in the central region. However, as in the
cases above, the existence of compression (spread) of ρ1 forD < 1 (D > 1) is quite apparent.
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Figure 3. Same as in figure 2, for the first excited state (n = 1).

6. Bose-like operators

The annihilation and creation fractional-dimensional Bose-like operators are given by

a = 1√
2
(ξ + iP) = 1√

2

[
d

dξ
+ ξ − (D − 1)

2ξ
R +

(D − 1)

2ξ

]
(46)

and

a† = 1√
2
(ξ − iP) = 1√

2

[
− d

dξ
+ ξ +

(D − 1)

2ξ
R − (D − 1)

2ξ

]
(47)

respectively. From equations above and using the following relations for generalized Laguerre
polynomials: (see [35])

dLαk (x)

dx
= −Lα+1

k−1(x) = 1

x

[
(k + α)Lα−1

k (x)− αLαk (x)
]

(48)

and
dLαk (x)

dx
= Lαk (x)− Lα+1

k (x) = 1

x

[
(k + 1)Lα−1

k+1 (x)− (α − x)Lαk (x)
]

(49)

it is not difficult to prove that

aχn =
{ √

n χn−1 for n even√
n +D − 1 χn−1 for n odd

(50)

and

a†χn =
{ √

n +D χn+1 for n even√
n + 1 χn+1 for n odd.

(51)

It is a remarkable result that, in contrast with the a priori assumption that the annihilation
and creation operators are the same in fractional- and one-dimensional spaces (see [20]),
equations (50) and (51) show us a clear dependence of the Bose-like operators on the
dimensional parameter.
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Moreover, from equations (46), (47) and bearing in mind the orthonormality relation
(equation (43)) one may obtain

〈ξ 2〉n = n +D/2. (52)

One should observe that if D = 0, both the energy and the mean square amplitude of the
zero-point oscillations may reach—as in the classical linear oscillator—the value zero. This is
because the integration weight in fractional-dimensional space becomes a Dirac delta function
δ(ξ) [11] when D → 0 i.e. it collapses to zero extension, whereas χ0 remains bounded.
Consequently, the probability density ρ0 → δ(ξ) when D → 0 and the particle is totally
localized at ξ = 0.

In terms of the fractional-dimensional Bose-like operators, the Hamiltonian may be written
as usual:

H = a†a + aa†

2
. (53)

However, the standard definition for the operator number of particles has to be generalized:

N = 1
2 ({a, a†} −D). (54)

The fractional-dimensional creation–annihilation operators a†, a are also found to satisfy

[a, a†] = 1 + (D − 1)R {R, a} = {R, a†} = 0 (55)

and the trilinear parabosonic commutation relations

[{a, a†}, a] = −2a [{a, a†}, a†] = 2a†. (56)

In equation (55) the quantity D − 1 can be understood as a real deformation parameter of
a deformed Heisenberg algebra with reflection [36, 37]. Thus, at the integer values of the
dimensionality D = 1, 2, 3, . . . , the algebra (55) represents parabosons of order D [38, 39].
On the other hand, for non-integer values of the dimensionality (D > 0), the algebra (55) can
be considered as a generalization of parabosons.

For spaces with 0 < D < 2, the commutation relations (55) can be normalized (in a
similar way as in [37]) by introducing the new operators

c = a[1 − (D − 1)R]−1/2 c† = [1 − (D − 1)R]−1/2a†. (57)

These operators anticommute with the reflection operator, {R, c} = {R, c†} = 0, and satisfy
the relation

cc† − (2 −D)RD−Rc†c = 1 0 < D < 2. (58)

One should note that the normalized form (equation (58)) represents a guon-like algebra [40,41]
with a D-dependent operator instead of a c-number q-factor.

7. Conclusions

Taking account of the general Wigner commutation relations, we have obtained momentum–
position uncertainty relations for systems of one degree of freedom in a fractional-dimensional
space. It is shown that the lower bound corresponding to the momentum–position uncertainty
inequality depends on the dimensional parameter for even and odd states. However, for states
with nondefinite parity, the well known momentum–position uncertainty relation of the one-
dimensional case is recovered independently of the dimension of the space. The behaviour of
the probability density in fractional-dimensional space has been studied for two systems: a
free particle and a Bose-like oscillator. In both cases, a compression (spread) of the probability
density function can be observed for D < 1 (D > 1). This interesting behaviour reveals a
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strong relation between the dimension of the space and the degree of confinement (or spread) of
the system, a result in agreement with a previous hypothesis extensively used in modelling low-
dimensional systems [12–21]. Finally, we have also deduced expressions for annihilation and
creation Bose-like operators in a fractional-dimensional space. These operators together with
the reflection operator form an R-deformed Heisenberg algebra with a deformation parameter
depending on the dimension of the space. The normalized form of the corresponding R-
deformed Heisenberg algebra represents a guon-like algebra with a D-dependent operator
instead of a c-number q-factor.
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Appendix A

Here we solve the equation

∇u = du

dξ
− A

ξ
Ru +

(D − 1)

2ξ
u = 0 (59)

and demonstrate that the general solution of equation above reduces to a constant if we chose
A = (D−1)

2 .
By introducing the functions ueven(ξ) = u(ξ) + u(−ξ) and uodd(ξ) = u(ξ)− u(−ξ) and

considering equation (59) the following equations can be found:[
d

dξ
− A

ξ
+
(D − 1)

2ξ

]
ueven(ξ) = 0 (60)

and [
d

dξ
+
A

ξ
+
(D − 1)

2ξ

]
uodd(ξ) = 0. (61)

After solving equations (60) and (61) we obtain general expressions for ueven(ξ) and
uodd(ξ)

ueven(ξ) = c1|ξ | 2A−(D−1)
2 uodd(ξ) = c2|ξ |− 2A−(D−1)

2 (c1, c2 = const). (62)

From the requirement uodd(ξ) = −uodd(−ξ) the constant c2 is found to be zero. Finally, the
general solution u = [ueven + uodd]/2 of equation (59) is obtained:

u(ξ) = c1

2
|ξ | 2A−(D−1)

2 . (63)

If we now put A = (D−1)
2 in equation (63) the general solution of equation (59) reduces to

u = constant.

Appendix B

One should notice that the eigenfunctions !p(ξ) of the fractional-dimensional momentum
operator (see equation (31)) are not square integrable. Then by introducing a damping factor
in the inner products as in [24]

〈!p|!p′ 〉 = σ(D)

2
lim
γ→0

∫ ∞

−∞
e−γ ξ 2

!∗
p(ξ)!p′(ξ)|ξ |D−1 dξ (γ > 0) (64)
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one can demonstrate that the eigenfunctions!p(ξ) form a complete, orthonormalized system.
Making use of the formula (see [24])

lim
γ→0

∫ ∞

0
dξ e−γ ξ 2[|pξ |1/2Jα(|pξ |)][|p′ξ |1/2Jα(|p′ξ |)]

= lim
γ→0

|pp′|1/2
2γ

exp

[
−|p|2 + |p′|2

4γ

]
Iα

( |pp′|
2γ

)

= lim
γ→0

1

2
√
πγ

exp

[
− (|p| − |p′|)2

4γ

]
(65)

where Iα(x) represents a modified Bessel function with the asymptotic behaviour Iα(x) →
ex√
2πx

as x → ∞ and noting that the last term in equation (65) is just a representation of the
Dirac delta function δ(|p| − |p′|), it is not difficult to obtain from equations (31), (64) the
following relation:

〈!p|!p′ 〉 = 2σ(D)|pp′| 1−D
2 ApAp′δ(p − p′). (66)

By now choosing the normalization factor as

Ap =
√

|p|D−1

2σ(D)
(67)

equation (66) reduces to the orthonormalization condition 〈!p|!p′ 〉 = δ(p − p′). Following
a similar procedure, the completeness condition 〈!p(ξ)|!p(ξ ′)〉 = δ(ξ − ξ ′) can be also
obtained.

References

[1] Wilson K G and Fisher M E 1972 Phys. Rev. Lett. 28 240
[2] Ma S 1973 Rev. Mod. Phys. 45 589
[3] Fisher M E 1974 Rev. Mod. Phys. 46 597
[4] Beckmann R and Karsch F 1979 Phys. Rev. Lett. 43 1277
[5] Gefen Y, Meir Y, Mandelbroot B B and Aharony A 1983 Phys. Rev. Lett. 50 145

Mandelbroot B B 1989 The Fractal Geometry of Nature (San Francisco: Freeman)
[6] Bhanot G, Duke D and Salvador R 1985 Phys. Lett. B 165 355

Bhanot G, Neuberger H and Shapiro J A 1984 Phys. Rev. Lett. 53 2277
[7] Zeilinger A and Svozil K 1985 Phys. Rev. Lett. 54 2553

Svozil K 1986 J. Phys. A: Math. Gen. 19 L1125
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